
Generalitat de Catalunya
Departament d’Ensenyament
INS Provençana

FINAL PROJECT G1

GRAPHIC ADVENTURE

Final project: A Quarantine Adventure

Institut Provençana Course 2019-2020

Development of multiplatform applications

Students:

María Chacón Alcaide

Alexandra Martínez Pérez

INDEX
1.PROJECT MODULE SHEET (IT DEPARTMENT)..3
2.FUNCTIONAL REQUERIMENTS WITH THEIR PRIORITY..4
3.USE CASES...6

3.1.Explanation Cases d'Us (high priority)...6
4.INITIAL PROTOTYPE..10

4.1.ER Diagram (initial prototype)..10
4.2.Class diagram (initial prototype)...10

5.TECHNOLOGIES USED ON PROJECT’S DEVELOPMENT..11
6.FINAL DOCUMENTATION..12

6.1.Final ER Diagram...13
6.2.Database development and implementation...13
6.3.Final Classes diagram..17
6.4.JAVA Model..18
6.5.Web service..18
6.6.Postman testing..21
6.7.Explanation of client code..23
6.8.Prototypes..24

7.INSTALLATION GUIDE...30

2

1.PROJECT MODULE SHEET (IT DEPARTMENT)

CICLE I GROUP-CLASS
DAM2

TITLE
A Quarantine Adventure

GROUP'S STUDENTS
Alexandra Martínez
María Chacón

DESCRIPTION

The game is about a person who, during the confinement by the Covid-19, tries to skip it
and get to see his partner who lives 10km away (the couple and the km can vary, it can be
more or less depending on the difficulty, and the couple can be parents or they can be
grandparents, whatever). The mission is to first reach the goal, and secondly, gain more
points of happiness.

The adventure begins with our protagonist, at home, thinking about that loved one. The
happiness score starts at 0, he is very sad and bored, so in an attack of irresponsibility, he
decides to put his feet on the street and move towards his destination.

During the map, there are several areas to click on (different streets and squares that stand
between the protagonist and the goal). As we go along we can click on these areas.
Each zone leads to an event (random but corresponding to that zone). The user must
choose one of the answers provided. Depending on the answer (and mostly on the luck)
the protagonist: 1. will be stopped (the game is over), 2. will suffer a penalty in happiness,
or 3. an increase in happiness and finally will advance.

If the protagonist is caught by the police in the street, without an excuse or justification, he
loses the game and the points counter will be set to 0, also losing any rewards he may have
won during the course of this game.
If the protagonist is overcoming the events in a somewhat precarious way, he will be able
to reach the end but with a low score.

If, on the other hand, our protagonist is doing great, he will arrive with a high score and set
a new record.

There are items and inventory, and a shop to buy them.

REQUIRED MATERIALS AND TECHNICAL SPECIFICATIONS OF THE PROJECT

GlassFish Server or Tomcat (?)
MySQL
Visual Studio 2019 Community
C# Windows .Net Framework

3

2.FUNCTIONAL REQUERIMENTS WITH THEIR PRIORITY

RF1. Main Window
RF1.1 Register

The user can register and create an account with which he can log in
High

RF1.2 Validate (login)
The user will be able to login with his account previously made
High

RF1.3 Cancellation
The user can unsubscribe at any time, taking into account that he will lose his records.
Medium

RF1.4 Request to modify user data
The user can make a request to change data (password...)
Medium

RF1.5 Configuration
The player will be able to configure options such as sound volume, music...
Medium

RF2- Game start window

RF2.1-Start New Game
The player will be able to start a new game.
High

RF2.1.1 Character selection
The player can select the character he wants to play.
High.

RF2.2 Load Game
The player may resume a saved game.
Medium

RF2.2.1 Delete Game
The player may delete a saved game.
Medium

RF2.3 Record máximo
Show maximum record for this player.
Low

RF2.4 Ranking
The player will be able to consult which position in the ranking he is in.
Low

RF2.5 Achievements
The player will be able to consult his achievements and non achievements.
Low

RF2.6 Configuration
The player will be able to configure options such as sound volume, music...
Medium

4

RF3-In-game features (character)

RF3.1 Show Game Window
The player will be able to access the shop only at the beginning of the game, and
spend their money (collected from other games) on usable items. (optional)
High

RF3.2 Shop (buy)
The player will be able to access the shop only at the beginning of the game, and spend
their money (collected from other games) on usable items. (optional)
Low

RF3.3 Movement
The player can click on the area he wants to advance to on the map (within range).
High

RF3.4 Inventory
We will have a drop-down menu to view our inventory, and the player will be able to check
their inventory and/or use items.
Medium

RF3.5 Event
The system displays a random event according to the area you are in on the map. It
will consist of the statement of a situation and possible answers (actions).
The player will be able to choose an answer.
Depending on what he has chosen, there will also be a consequence before moving
on to the next point on the map (positive, negative or neutral).
Among these events there can be things like someone coughing at you, , dodging a
patrol...
Game over situations could be that for example you are stopped by the police and
you are not allowed to leave (a dog, ...). You would get a fine that would make you
lose all the happiness of the game. (game over)

High

RF3.6 Arrival at destination
If the score obtained is higher than the one reflected in your profile, your maximum
score will be updated.
Depending on the happiness obtained, the player will have a reward in coins that can
be spent in the shop at the beginning of the next game (the first game the user starts
will have no coins).
High

RF3.7 Exit game
The player can leave the game at any time by saving the changes automatically (it
would load the map or event that is not completed).
High

RF4. Installation and configuration app

RF4.1 Installation
The user will be able to install the game.
Medium

RF4.2 Uninstall
The user can uninstall the game at any time.
Low

5

3.USE CASES

3.1.Explanation Cases d'Us (high priority)

Nombre: CDU1.1 -Sign up

Description: The user will be registered and will have his account with his data.

Actors: User.

Preconditions: The user selects "Register" in the main window.

Post-conditions: A message will be sent to the user and the user will be registered.

Normal flow:

1.- The user is shown a form to fill in data.

2.- The user completes the form with aliases, password, and selects send.

3- The user will be saved in the DB.

4.- The user receives a message as he has been correctly registered.

Alternative flow:

2.A1.- The alias already exists in the DB, the user is informed to put a different one.

A2.- The alias or password is empty.

The user can exit the application.

6

Name: CDU1.2-Login

Description: The user will insert his alias and password to log in.

Actors: User.

Preconditions: The user must be registered.

Post-conditions: The user can display the home screen (RF2).

Normal flow:

1- The user will insert his/her credentials and press the Validate button.

2- The following window will be displayed

Alternative flow:

A- The credentials are incorrect, the user is informed.
1.B- Nickname or password is empty.
1.C. Password or username lenght are not valids.

Name: CDU2.1-Start New Game

Description: Starts a new game

Actors: User

Preconditions: The user must be logged in.

Post-conditions: The user will go to character selection.

Normal flow:

1- The user selects Start new game.

2- A new game is created.

Alternative flow:

1.A.- The user decides to exit, returns to the main screen.

Name: CDU2.1.1 Choose Character

Description: The player will choose the character he wants to play.

Actors: User

Preconditions: Having Selected Start New Game

Post-conditions: The user(player) will be able to access the shop and/or access the map.

Normal flow:

1- The user must choose one of the characters

Alternative flow:

1.A.- The user decides to exit, returns to the main screen.

7

Name: CDU3.1 Show Map

Description: The map will be generated with random zones.

Actors: User.

Preconditions: The user has selected a character.

Post-conditions: The user will be able to move his character.

Normal flow:

1.The system will generate the map of the game, with its zones.

2.The game will start and the player will be able to see the screen with all its elements.

Alternative flow:

1.A.- The user decides to exit, returns to the main screen.

Name: CDU3.3 Movement

Description: The user will choose which area to move to.

Actors: User.

Preconditions: Map loaded.

Post-conditions: A zone event will be shown.

Normal flow:
1.User selects which zone he wants to move to.
2. The character moves to that zone.

Alternative flow:

1.A.- The user decides to exit, returns to the main screen (the game is saved).

8

Name: CDU3.5 Event

Description: The system will launch a random event to the user, depending on the

localization.

Actors: User.

Preconditions: The character has moved on.

Post-conditions: The map is displayed again.

Normal flow:

1.The system launches an event and its possible answer options.

2. The user chooses one of those answer options.

3. The system launches a consequence.

4. The character suffers the negative or positive consequence (it is resolved).

5. The map is displayed again.

Alternative flow:

4.A1.The character has a consequence that leads him to Game Over (the system notifies

him).

A2.The user returns to the main screen.

A.- The user decides to exit, and returns to the main screen (the game is saved).

Name: CDU3.6.End of the game

Description: The character reaches the goal, wins the game and wins happiness (and

money).

Actors: User.

Preconditions: The user has passed all the zones.

Post-conditions: The record will be kept in case it is surpassed (or there is no previous

record).

Normal flow:

1. The character reaches the end zone and the final event is found.

2.Win the right way and win the game.

3.Happiness is achieved (final score).

Alternative flow:

2.A. Follow the wrong path and lose the game.

9

Name: CDU3.7 Exit application

Description: The user can exit the application at any time.

Actors: User.

Preconditions: The application has been initiated.

Post-conditions: None.

Normal flow:

1- The user gives Exit.

2- Confirm that you want to exit the application.

Alternative flow:

2.A. Cancel the action and keep the application open

10

4.INITIAL PROTOTYPE

4.1.ER Diagram (initial prototype)

4.2.Class diagram (initial prototype)

11

5.TECHNOLOGIES USED ON PROJECT’S DEVELOPMENT

We have decided to use the technologies with which we have acquired the most experience during the

course.

JAVA: It was the most used language during the course and the one we felt most comfortable with. The

main characteristic -and advantage- of this programming language is that it is a platform-independent

language, that is, any program created through Java will be able to work correctly on computers of all types

and with different operating systems. This is a benefit for programmers, as it makes their work easier since

they are no longer forced to create a different program that adapts to Windows, Linux, Mac... As the server

part was from Linux and the client from Windows, it was ideal for our project.

Web service API REST: is an interface between systems that uses HTTP requests to obtain data or

generate operations on that data in all possible formats, like JSON in our case.

MySQL: Although last year we used only ORACLE, MySQL is the technology used during this year. Among

its many advantages is that it is also multiplatform and we have had it more present during this year.

MVC pattern: In our case it has been the most suitable model since we have worked in a project separated

by three very well defined layers. This pattern allows us to separate an application into 3 layers, a way of

organizing and making a project scalable

DAO Pattern: As you have an application that is not linked to data access, the DAO pattern is responsible

for bringing you the data regardless of where it is stored.

Glassfish server: It is an application server that implements the technologies defined in the JAVAEE

platform. We have decided to use it since it is the one we had seen in class.

C# Net Framework: C# is an object-oriented language that allows you to create a wide variety of

applications. As it is one of the languages used and learned during the course we decided to use it for the

client because of its great usefulness for the design by using WPF , it was ideal for our project.

12

6.FINAL DOCUMENTATION

We divided the job on frontend and backend. Maria was the responsable of backend (database, java model

and web service) and Alexandra of frontend (client desktop and art).

Here is a capture of our trello with the three sprints:

Sprint 1

Documentation: Brainstorming to develop the events on game and functionality of it.

Backend: Create and implement database.

Frontend: Creation of mainwindow and startwindow. Creation of pixelart images for the background of both

views.

Sprint 2

Backend: Developed the part of User management (model and servlets), Game management (max_score,

game, rolechar and progress model).

Tests on postman for the user servlet.

Frontend: Drawing images for characters, create model for user management, testing of client-server

connection.

Sprint 3

Backend: Developed the part of Game servlets, and developed Events part (Event, Localization,

Answer_option, Consequence) on dao and model. Made testing on local modeltest.

Created part of events servlet.

Tests on postman for the events servlets (EventServlet, LocalizationServlet, Answer_optionServlet,

ConsequenceServlet).

Frontend: Drawing images for events and implementation and creation views and testing a full Game

experience.

For more detailed information visit our Trello.

13

6.1.Final ER Diagram

We had to make a few changes during the process. At last we’ve decided that the “map” on client desktop

was static, a sequence of locations that always be on the same order, but the events received from server

were random.

Because of this we had to eliminate the map entity and progress (they didn’t had any sense on the actual

planning).

So we decided to make it more interesting incorporating the random events that some of them answer

options could result on a “game over situation”.

As a matter of resting time to work on the development of our game, we could not incorporate the part of

store or inventory to exchange the winned coins.

If we had even one more sprint, we could add more functionalities as save game, load game, inventory and

store.

14

6.2.Database development and implementation

I created our database on mysql using MariaDB on Linux (as seen and used in institute).

You can find the .sql document under resources directory on java project.

The tables created are:

Data cases

The tables that needed initial data are the referents to the events (event, answer_option, consequence),

characters (rolechar), and objects. I attach a capture of the table and some inserts:

• Table objects:

INSERT INTO `object` (`idObject`,`name_object`,`cost_object`) VALUES

(0,'No Object',0),

(1,'Mascarilla quirúrgica',5),

(2,'Bandera Españita',10),

(3,'Piruleta',5),

(4,'Chuches perro',7),

(5,'Justificante',15);

• Table event :

INSERT INTO `event` (`idEvent`,`loc_code`,`ev_random`,`event_text`) VALUES

('EV_021','LOC_002',1,'Hay un grupo de madres de paliqueo. Reconoces a una de ellas, ¿Te acercas a

saludar?'),

('EV_022','LOC_002',2,'Hay un grupo de niños. El niño de tu vecina esta en el suelo llorando porque se ha

caído.'),

('EV_023','LOC_002',3,'Ves que hay mucha gente en el parque…')...

15

• Table answer_option:

INSERT INTO `answer_option` (`idOption`,`event_code`,`object_id`,`option_text`,`consequence_code`)

VALUES

('OP_0211','EV_021',0,'No! Ni hablar, no quiero perder ni un minuto.','CO_0211'),

('OP_0212','EV_021',0,'La saludas desde lejos y continuas tu camino.','CO_0212'),

('OP_0213','EV_021',1,'Sí! Siempre tiene buenos chismes.','CO_0213')

…

• Table consequence:

INSERT INTO `consequence` (`idConsequence`,`cons_desc`,`game_over`,`reward`) VALUES

('CO_0211','Acelero el paso y cruzo el parque haciendome el longuis.',false,0),

('CO_0212','Bien! No he apartado la cabeza y no se ha acercado.',false,25),

...

16

• Table roleChar:

INSERT INTO `rolechar` (`nameChar`,`txtIni`,`txtFin`) VALUES

('La Jeny','La Jeny lleva dos meses sin ver a su pareja y no aguanta más! Va a emprender el camino hasta su

casa para darle un beso por fin.','Qué mala suerte! El Brian ha salido a pasear al perro. Le toca sentarse en el

salón con su suegra hasta que vuelva, aún así has conseguido llegar sin problemas. Enhorabuena!'),

('Cristian','La abulela de Cristian hizo croquetas ayer y ya basta! Quiere zamparse esas croquetas

deliciosas.','Por fin en casa de la yaya! No vas a dejar ni una de esas deliciosas croquetas. Enhorabuena!'),

('Gertrudis','El nietecito de Gertrudis ha cumplido cinco añitos y decide que no quiere perdérselo por nada del

mundo. Con lo que le gusta una fiesta!','Llegas a tiempo para soplar las velas. A tu nietecito le ha encantado

su regalo. Enhorabuena!');

17

6.3.Final Classes diagram

As you can see, we had to simplificate it to make it more legible:

18

6.4.JAVA Model

This classes diagram corresponds to the JAVA model. Is the one who comunicates servlets with database.

We decided to use a singleton pattern and DAOs to implement our data model.

At last we separated operations on 3 DAOs:

• UserDAO: Manages all operations of User class.

• EventDAO: Manages all operations about events (event,

answer_option, consequence and localization classes).

• GameDAO: Manages the operations about game (game,

max_score, progress and rolechar classes).

I have to give the name RoleChar to class for characters because

there was some type of conflict with that word on mysql, and had

to change the name of the class.

6.5.Web service

I decided to implement a RestFul API Web Service as seen on M015 assignature.

I developed a single servlet for every class on java model, as we did on our M015

project, to have a more legible and distributed code (a thought it will be easiest to

manage from client).

There’s a resum of the code developed on the web service:

User Servlet

Operation Action Method Parameters Error codes

FindAllUsers findAll GET /user?action=findAll 1 OK (return JSON with all
users)
0 Empty return

indUserById findById GET /user?action=findById&idUser=nameuser 1 OK (return JSON with User)
0 User doesn’t exists

AddUser add POST /user?action=add
JSON with User to add

1 OK
0 SQL Exception or error during
process
-1 User already exists
-2 idUser lenght over than 15
-3 password lenght minor than
5 or over 8

DeleteUser delete POST /user?action=delete
JSON with User to delete

1 OK
0 Error during process
-1 User doesn’t exists

ModifyUser modify POST /user?action=modify
JSON with User to save on DB

1 OK
0 Error during process
-1 User doesn’t exists

19

Login Servlet

Operation Action Method Parameters Error codes

doPost method on
login servlet

POST /login
JSON with User formed with parameters
needed to validate (idUser, password)

1 OK
0 User doesn’t exists
-1 Password is not valid

Logout Servlet

Operation Action Method Parameters Error codes

processRequest
on logout servlet

/logout 1 OK
-1 User not authenticated

RoleChar Servlet

Operation Action Method Parameters Error codes

searchChar findChar GET /rchar?action=findChar&idChar=charid 1 OK (return JSON RoleChar)
0 No char found.
-1 Number Format Exception
-2 idChar cannot be minor than
1

Max_Score Servlet

Operation Action Method Parameters Error codes

searchScore findScore GET /maxscore?
action=findScore&user_code=nameUser

1 OK (return JSON
MAX_SCORE)
0 No record registered for this
user yet.

updateScore setScore POST /maxscore?action=setScore
JSON with max_score object

2 Record successfully added
1 Record successfully updated
0 Error during process
-1 The record registered is
greater than the one given
-2 No user registered for the
code_user given

removeScore deleteScore POST /maxscore?action=deleteScore
JSON with max_score object

-1 Max_Score not found
0 Error during process
1 Successfully deleted

Game Servlet

Operation Action Method Parameters Error codes

searchGame findGame GET /game?
action=findScore&u_code=idGame

1 OK (return JSON GAME)
0 No game found by idGame
-1 Number Format Exception

insertGame addGame POST /game?action=addGame
JSON with Game object

1 OK
0 Error during process
-1 gName lenght over 15

updateGame setGame POST /game?action=setGame
JSON with Game object

1 OK successfully updated
0 Error during process
-1 Game doesn’t exists on DB
-2 Object stored and recieved
are not equals

removeGame deleteGame POST /game?action=deleteGame
JSON with Game object

-1 Max_Score not found
0 Error during process
1 Successfully deleted

20

Localization Servlet

Operation Action Method Parameters Error codes

searchLocs findLocs GET /loc?action=findLocs 1 OK (return JSON List of Locs)
0 Error during process

findLoc findLocById GET /loc?action=findLocById&idLoc= idLoc 1 OK (return JSON
Localization)
0 Localization not found.

Event Servlet

Operation Action Method Parameters Error codes

retrieveRandomEv
ent

randEvent GET /event?
action=randEvent&loc_code=loc_code

1 OK (return JSON with event)
0 Loc code given doesn’t have
events or doesn’t exists

retrieveEventById findEvent GET /event?
action=findEvent&idEvent=idevent

1 OK (return JSON with event)
0 Doesn’t exists

Answer_Option Servlet

Operation Action Method Parameters Error codes

findAnswerOptions findOpt GET /answer?
action=findOpt&event_code=event_code

1 OK (return JSON with
Answer_Option list)
0 Event code given doesn’t
exists

Consequence Servlet

Operation Action Method Parameters Error codes

retrieveConsequen
ce

findCons GET /cons?
action=findCons&idConsequence=idCon
sequence

1 OK (return JSON with
Consequence object)
0 idConsequence doesn’t exists

Progress Servlet

Operation Action Method Parameters Error codes

insertProgress addPro POST /progress?action=addPro
JSON with Progress object

1 OK
0 Error during process

removeProgress deletePro POST /progress?action=deletePro
JSON with Progress object

1 OK
0 No matches for the game_id
of the given Progress object

I did this resum/guide for it to be more easiest to understand from client what Alexandra must recieve and

send. Almost the expected code result for every action.

I had to search how to recieve JSON objects and manages them for the POST petitions. I thought it will be

difficult but i found it easy to understand and to implement.

21

6.6.Postman testing

Someone has told me about to make the tests of http petitions with this app, because the addon Rest used

on M015 sometimes fails and is not possible to have collections as Postman does.

Actually i have this collections on my Postman app:

I’ve created one collection to every Servlet to save and recuperate any petition tested before.

Let me show you one test for GET petition and one for POST petition (waiting for a request as a JSON

object).

Let’s take User’s servlet tests as an example. For the GET petition we want to list all the users found on DB:

22

Let’s try to find a non existing user on DB:

Now let’s see a POST example for adding a new user to DB:

As you can see i’m passing as a JSON format the parameter needed for request (an user object).

I will attach all tests made on Postman to the documentation of the project.

23

6.7.Explanation of client code

The AQuarantineAdventure project is equivalent to the client part of our G1 group.

It contains the windows, classes, images, model and connection to the server through Http
requests in JSON format.

It is Model-ViewController, which means that the view controls most of the errors, messages etc.
that may arise during the game.

This project is made with Visual Studio 2019 Community
It is a Windows Presentation Foundation desktop application in C# language

The solution consists of two projects, Models and AQuarantineAdventure which is the view-
controller.

Models contains 2 fields:

Models.model: Contains the ADT classes Answer_option,
Consequence, Event, Game, Locs, Max_score, ResponseResult,
Rolechar and User with their attributes, constructors, setters and
getters , and some, tostring, equals and hashcode when needed.

And the Model class, which is the link between the view-controller
and the persistence (connection to the server) and contains all the
necessary methods to collect the requests that are sent from the
view (either when loading the window, clicking a button, etc...) save
them, and send them to the persistence to make the required
request, receive the response and return it to the view-controller.

It also contains the attributes, the instances of the classes and the
getters and setters of the objects that had to be saved when
changing views, so that the next screen could retrieve them and use
them if needed.

Models.persistence: Contains the MysqlDAO class with its attributes, instances and get and post
http request methods to send and receive data from the server, which contains the database.

AquarantineAdventure: Contains 2 image folders (images and
imgevents) and the CharSelect, Consequence_Window,
Event_Window, MainWindow, Map_Window windows.
Register_Window and Start_Window.

These wpf windows contain the user's interaction with the game
and the user's interaction with the code behind it.
These windows, running, allow the user to register, log in, delete
his user, start a new game, choose a character and name the
game, play (move forward on the map by solving the different
events that come up) and reach the end to gain a score, which is
then updated in the database.

The URLs needed to make http requests are all located in
Properties.Settings.settings. So if you need to change the URL
for one reason or another, just change the URL of that file.

24

6.8.Prototypes

25

RF1 Main Window

RF1.1 Register

26

RF2- Game start window

RF2.1-Start New Game RF2.1.1 Character Selection

27

RF3.1 Show Game Window

RF3.5 Event

28

RF3.5 Event - answers

29

RF3.5 Event- consequence

RF3.5 Event - game over

RF3.6 Arrival at destination

Problems encountered

At first we had a lot of problems with the client-server connection. This connection error was due
to a compatibility bug related to Netbeans on Windows, which was solved by running the server on
Linux (netbeans java) on a laptop while the client (visual studio c#) was running on another pc
on windows.

Comments

Screens
I think the screens are not optimized well. For example, the map window is permanently open and
displayed in the background during events, because if I hide or close it, the progress of the
buttons (locations) display during the game is lost. I understand that there will be much more
efficient ways to handle window switching.
Also, not all "close" button events are implemented.
These two things (and others) are something that I would have liked to improve with more time.

Symbols
When loading the text of characters, events and consequences with http requests using JSON
format and receiving the responses from the database, there is a problem with decoding
htmlEncode characters which is causing wrong characters to appear in symbols outside the
English alphabet.

Learning
During the development of this project I have improved the creation of methods, calls to methods
from other classes, pass through parameters and instances. I have learned to connect to a server
through http requests the client in visual studio, something that we had not seen in class. .

30

7.INSTALLATION GUIDE

AquarantineAdventure

Welcome to our application!

As our application is not common, it cannot be installed with an exe file. This is because it requires a server

to provide you with data. Here are the steps you have to follow to enjoy it.

1.Download the GraphicAdventureServerCode project (GAServlet server):

https://github.com/mchaconalcaide/GraphicAdventureServerCode.git

Download the zip and unzip the file.

2.Download the GraphicAdventureJAVACode (GraphicAdventureProject data model):

https://github.com/mchaconalcaide/GraphicAdventureJAVACode.git

Download the zip and unzip the file.

Once you have the two projects, open them in your IDE. You will have to add the following libraries to each

one:

To the GAServlet:

• JAVA EE Web 7 API Library - javaee-web-api-7.0.jar

• gson-2.8.6.jar

• mysql-connector-java-8.0.20.jar

• GraphicAdventureProject

• JDK 1.8

• Glassfish Server 5.1

To the GraphicAdventureProject:

• mysql-connector-java-8.0.20.jar

• JDK 1.8

For the application to work you need to load the database. You have the MySQL code inside the resources

directory in GraphicAdventureProject.

31

https://github.com/mchaconalcaide/GraphicAdventureServerCode.git
https://github.com/mchaconalcaide/GraphicAdventureJAVACode.git

3.Download the AQuarantineAdventure client project:

https://github.com/amartinezperez92/AQuarantineAdventure.git

Open it in Visual Studio and in your nugget package manager install the following packages:

• Newtonsonft.Json

In the solution browser: in Properties - Settings.settings you have to change the ip of the URLs to the ip of

the server (localhost if it is the same machine as the client). Also you can change the ip from App.config

archive.

Once all the previous steps have been carried out, to make the application work you have to execute the

server, selecting the GAServer project and clicking on run. Once an explorer window has been opened, it

will be ready to work. Now let's go to the client and we can run our application.

We hope you enjoy it!

A Quarantine Adventure Project Team.

32

https://github.com/amartinezperez92/AQuarantineAdventure.git

	1.PROJECT MODULE SHEET (IT DEPARTMENT)
	2.FUNCTIONAL REQUERIMENTS WITH THEIR PRIORITY
	3.USE CASES
	3.1.Explanation Cases d'Us (high priority)

	4.INITIAL PROTOTYPE
	4.1.ER Diagram (initial prototype)
	4.2.Class diagram (initial prototype)

	5.TECHNOLOGIES USED ON PROJECT’S DEVELOPMENT
	6.FINAL DOCUMENTATION
	6.1.Final ER Diagram
	6.2.Database development and implementation
	6.3.Final Classes diagram
	6.4.JAVA Model
	6.5.Web service
	6.6.Postman testing
	6.7.Explanation of client code
	6.8.Prototypes

	7.INSTALLATION GUIDE

